Finite-Dimensional Vector Spaces
Paul R. Halmos
My purpose in this book is to treat linear transformations on finitedimensional vector spaces by the methods of more general theories. The idea is to emphasize the simple geometric notions common to many parts of mathematics and its applications, and to do so in a language that gives away the trade secrets and tells the student what is in the back of the minds of people proving theorems about integral equations and Hilbert spaces. The reader does not, however, have to share my prejudiced motivation. Except for an occasional reference to undergraduate mathematics the book is self-contained and may be read by anyone who is trying to get a feeling for the linear problems usually discussed in courses on matrix theory or “higher” algebra. The algebraic, coordinate-free methods do not lose power and elegance by specialization to a finite number of dimensions, and they are, in my belief, as elementary as the classical coordinatized treatment.
جهت استعلام قيمت و سفارش چاپ اين محصول لطفا با انتشارات گنج حضور تماس حاصل فرماييد